The connected stable rank of the purely infinite simple $C^*$-algebras
نویسندگان
چکیده
منابع مشابه
The Connected Stable Rank of the Purely Infinite Simple C∗-algebras
Suppose that A is a unital purely infinite simple C∗-algebra. If the class [1] of the unit 1 in K0(A) has torsion, then csr(A) = ∞; if [1] is torsion-free in K0(A), then csr(A) = 2. If A is a non-unital purely infinite simple C∗-algebra, then csr(A) = 2. Before considering the connected stable rank of the purely infinite simple C∗algebra, we need to introduce some notation as follows. For the C...
متن کاملPurely Infinite Corona Algebras of Simple C∗-algebras
In this paper we study the problem of when the corona algebra of a non-unital C∗-algebra is purely infinite. A complete answer is obtained for stabilisations of simple and unital algebras that have enough comparison of positive elements. Our result relates the pure infiniteness condition (from its strongest to weakest forms) to the geometry of the tracial simplex of the algebra, and to the beha...
متن کاملPurely Infinite Simple C-algebras Arising from Free Product Constructions
Examples of simple, separable, unital, purely infinite C–algebras are constructed, including: (1) some that are not approximately divisible; (2) those that arise as crossed products of any of a certain class of C∗–algebras by any of a certain class of non–unital endomorphisms; (3) those that arise as reduced free products of pairs of C–algebras with respect to any from a certain class of states...
متن کاملThe Matrix Type of Purely Infinite Simple Leavitt Path Algebras
Let R denote the purely infinite simple unital Leavitt path algebra L(E). We completely determine the pairs of positive integers (c, d) for which there is an isomorphism of matrix rings Mc(R) ∼= Md(R), in terms of the order of [1R] in the Grothendieck group K0(R). For a row-finite directed graph E and field k, the Leavitt path algebra Lk(E) has been defined in [1] and [9], and further investiga...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05397-6